函数定义域的求法目录
函数定义域的求法

。
404 Not Found
。
。
。
。
。
。
。
。
函数定义域解的过程

f(x+3)的定义域为〔-5,-2〕,
即其中的x满足-5<=x<=-2
所以-2<=x<=1
所以f(x)的定义域是[-2,1]
则F(x)中, x-1和x+1都要满足[-2,1]
即-2<=x-1<=1,-1<=x<=2
-2<=x+1<=1,-3<=x<=0
同时成立
所以-1<=x<=0
所以F(x)定义域是[-1,0]
求函数定义域

由f(2x+1)
-2≤2x+1≤2
得到-3/2≤x≤1/2 (1)
由f(x-1)
-2≤x-1 ≤2
得到
-1≤x≤3 (2)
(1) (2)式取交集的
-1≤x≤1/2
求函数定义域,值域的求法。各种类型的都要

函数定义域的三类求法
一、给出函数解析式求其定义域,一般是先列出限制条件的不等式(组),再进行求解。
二. 给出函数的定义域,求函数的定义域,其解法步骤是:若已知函数的定义域为,则其复合函数的定义域应由不等式解得。
三. 给出的定义域,求的定义域,其解法步骤是:若已知的定义域为,则的定义域是在时的取值范围。
函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
标签: