平行四边形的定义、性质、判定

原发布者:幸福一家人192
一、平行四边形知识结构及要点小结平行四边形定义:有两组对边分别平行的四边开形是平行四边形。
性质:1、平行四边形的两组对边分别平行。
2、平行四边形的两组对边分别相等3、平行四边形的两组对角分别相等4、平行四边形的两条对角线互相平分。
判定方法:1、两组对边分别平行的四边形是平行四边形。
2、两组对边分别相等的四边形是平行四边形。
3、一组对边平行且相等的四边形是平行四边形。
4、两条对角线互相平分的四边形是平行四边形。
5、两组对角分别相等的四边形是平行四边形。
三角形中位线定义:连接三角形两边中点的线段叫三角形的中位线。
定理;三角形的中位线平行于三角形的第三边,且等于第三边的一半。
二、解题方法及技巧小结:证明线段相等或角相等的问题用过去所学的全等知识也可完成,但相对比而言,应用平行四边形的性质求证较为简单。
另外平行四边形对角线是很重要的基本图形,应用它的性质解题可开辟新的途径。
特殊的平行四边形知识结构及要点小结矩形:定义:有一个角是直角的平行四边形叫做矩形。
性质:1、具有平行四边形的所有性质。
2、矩形有四个角都是直角。
3、矩形有对角线相等。
4、矩形是轴对称图形,有两条对称轴。
判定方法:1、定义2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
菱形:定义:有一组邻边相等的平行
平行四边形性质及判定

性质 判定
平行四边形 平行四边形的对边平行 对边平行的四边形是平行四边形
平行四边形的对边相等 对边相等的四边形是平行四边形
平行四边形的对角相等 对角相等的四边形是平行四边形
平行四边形的对角线互相平分 对角线互相平分的四边形是平行四边形
一组对边平行且相等的四四边是平行四边形
平行四边形具有什么的性质

性质:
(矩形、菱形、正方形都是特殊的平行四边形。
)
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等” )
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行的高相等。
(简述为“平行线间的高距离处处相等”)
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”)
(6)连接任意四边形各边的中点所得图形是平行四边形。
(推论)
(7)平行四边形的面积等于底和高的积。
(可视为矩形。
)
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。
矩形和菱形是轴对称图形。
注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
(13)平行四边形对角线把平行四边形面积分成四等份。
(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
(15)平行四边形的面积等于相邻两边与其夹角正弦的乘积 。
扩展资料:
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。
平行四边形一般用图形名称加四个顶点依次命名。
注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。
平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
相比之下,只有一对平行边的四边形是梯形。
平行四边形的三维对应是平行六面体。
判定方法:
1、两组对边分别平行的四边形是平行四边形(定义判定法);
2、一组对边平行且相等的四边形是平行四边形;
3、两组对边分别相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形(两组对边平行判定);
5、对角线互相平分的四边形是平行四边形。
补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。
参考资料:搜狗百科----平行四边形
标签: