不定积分的求解技巧
不定积分的求解方法有第二类换元积分法、第一类换元积分法和分部积分法三种。第二类换元积分法解题步骤是令t=根号下(x-1),则x=t^2+1,dx=2tdt;原式=∫(t^2+1)/t*2tdt=2∫(t^2+1)dt等等。
1、第二类换元积分法
令t=根号下(x-1),则x=t^2+1,dx=2tdt
原式=∫(t^2+1)/t*2tdt
=2∫(t^2+1)dt
=(2/3)*t^3+2t+C
=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C,其中C是任意常数
2、第一类换元积分法
原式=∫(x-1+1)/根号下(x-1)dx
=∫[根号下(x-1)+1/根号下(x-1)]d(x-1)
=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C,其中C是任意常数
3、分部积分法
原式=∫2xd[根号下(x-1)]
=2x根号下(x-1)-∫2根号下(x-1)dx
=2x根号下(x-1)-(4/3)*(x-1)^(3/2)+C,其中C是你任意常数
刚学不定积分不太懂,求解
答:请在此输入您的回 在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。这样,许多函数的定...详细不定积分中,分式的化解技巧怎么学得会?
问:见图,第一步到第二步,希望能得到一个规律的总结,详细标签: 不定积分的求解技巧